

DNSハンズオン (1) ドメイン名登録, DNSサービス 権威DNSサーバ. DNSSEC編

藤原和典 fujiwara@jprs.co.jp 株式会社日本レジストリサービス 2016/11/30 Internet Week 2016 Last Update: 2016/11/28 1340 JST



#### 配布物の確認

- VMのIPアドレス、パスワード
- ・ JP Directのドメイン名、ID、パスワード



概要

- DNSを使うまで (藤原)
  - DNS概要
  - 実習:ドメイン名登録
  - 実習: 権威DNSサービスの使用
  - 実習: DNS設定の確認
  - 実習: Public DNSの使用
  - 実習: フルサービスリゾルバの設定 (高田)
  - 実習: 権威DNSサーバの設定
  - DNSSEC概要
  - 実習: DNSSECの設定
- 実習:DNSSECトラブルシュート編(其田)



### ハンズオンでやらないこと

- ・ 実際のドメイン名の登録
  - 登録にはクレジットカードが必要なため
  - 準備したドメイン名を使用
- Firewall設定/パケットフィルタ
  - iptablesなどの設定はOSによって違うため
  - 用意した環境では、DNS, ssh のポートは開放済み
     設定ミスすると実習できないため
- NSD, Unboundの自動起動の設定
  - OSによって設定方法が異なるため
  - Linuxでもdistribution, versionによって異なる
- VMのreboot
  - 起動しなくなったら実習できないため



# DNS概要



ドメイン名

- ドットで区切られた文字列
- インターネットにおける一意な識別子
- URL, メールアドレスなどの構成要素
  - http://www.nic.ad.jp
  - fujiwara@wide.ad.jp
  - ssh sh.wide.ad.jp
- ・ドメイン名を使わないと、
  - http://192.168.100.1/
  - ssh 2001:0DB8:1234:5678:9abc:def0:fdb9:7531
- IPアドレスなどの情報を抽象化するもの









#### Domain Name System (DNS)

ドメイン名と対応する情報の対応づけを行う
 インターネット上の分散データベース

- 階層的に管理

 基本機能:ドメイン名に対応する情報を登録・ 検索

– IPアドレス(IPv4, IPv6): Webサーバ, ホスト
– メールサーバ情報 (MX)
– SIPサーバなどのサービス情報 (SRV)



#### 前DNS時代

- ホスト名とIPアドレスの対応表(HOSTS.TXT)
   を共有
  - HOSTS.TXTをインターネットの全ノードにコピー
- 更新はファイル管理者(SRI-NIC)にメールで 通知
- ホスト増加で破綻
- 1985年3月, 最初のDNS登録



### 委任(delegation)

- 各階層において下位の名前管理を委任
  - RootからJPを委任 (委任先のネームサーバ指定)
  - JPからinternetweek.jpを委任 (委任先のネームサーバ 指定)
  - 委任された単位をゾーンと呼ぶ
- 委任先(下位)
  - その階層の名前の登録管理
  - さらに下位に委任
- ラベル(ドット区切り)ごとに委任可能
  - 委任しなくてもよい (ac.jp, go.jpなどは委任ではない)
  - ゾーンの中に複数のドット区切りを含む委任/名前があっ てもよい (例: jpからnic.ad.jpを委任)



DNSサーバ(ネームサーバ)

- 権威DNSサーバ
  - ゾーンの情報を保持するもの
  - ゾーンごとに存在
    - ルート
    - TLD (Top Level Domain) ... JPなどのラベルーつのもの
    - 各組織
- ・フルサービスリゾルバ (フルリゾルバ)
  - 名前解決を行う機構をリゾルバと呼ぶ
  - そのうち、ルートから各階層をたどるものをフルサービ
     スリゾルバと呼ぶ
  - 名前解決の効率化のために、途中結果をキャッシュ する













# DNSサーバに登録する情報(1)

#### ・リソースレコード

- 管理情報: Authority情報(SOA)
  - owner IN SOA MNAME RNAME SERIAL REFRESH RETRY EXPIRE MINIMUM
    - ・ MNAME: ゾーンのマスターサーバ名
    - RNAME: ゾーン管理者のメールアドレス
    - SERIAL: ゾーンのシリアル番号 (32ビット正数)
    - REFRESH: ゾーン転送パラメータ、ゾーン転送の間隔(秒)
    - RETRY: ゾーン転送パラメータ、転送失敗時のリトライ間隔(秒)
    - EXPIRE: ゾーン転送パラメータ、ゾーン転送からのゾーン情報有 効期間(秒)
    - MINIMUM: negative cache TTL值
  - 例: iw2016-0036.jp IN SOA iw2016-0036.jp. root.iw2016-0036.jp 1 3600 900 120960 300



# DNSサーバに登録する情報(2)

- 委任情報(NS)とネームサーバ情報に対応する 情報
  - iw2016-0036.jp IN NS ns1.iw2016-0036.jp
  - ns1.iw2016-0036.jp IN A 192.0.2.2
- IPアドレス(A, AAAA)
  - www.iw2016-0036.jp IN A 192.0.2.3
  - www.iw2016-0036.jp IN AAAA 2001:0db8::1
- user@iw2016-0036.jpのメールサーバー(MX)
  - iw2016-0036.jp. IN MX 100 mail-server.iw2016-0036.jp



# TLD(JP)に登録する情報(例)

- 委任ドメイン名とネームサーバ名(委任情報, NS)
   例: iw2016-0036.jp IN NS ns1.iw2016-0036.jp
- ネームサーバのアドレス情報(Glue records)
  - 例: ns1.iw2016-0036.jp IN A 192.0.2.2
- Glue recordsを添付できる条件
  - 上位ゾーン (jp) の子孫のホスト名(上位ゾーンの内部名)であること
  - jpゾーン内には、jp以外のホスト名のアドレス情報を添付できない
- Glue recordsを添付しないといけない条件
  - 委任の子孫のホスト名(委任の内部名)であること
  - 委任の子孫のホスト名のアドレス情報を添付しないと、名前解 決できない



# ハンズオン実習環境



端末

- ・各自のノートPC
  - Webブラウザ
  - sshクライアント(Tera Term, Putty, Cygwinなど)
     コマンドプロンプト
  - ターミナルエミュレータ
- ネットワーク: 会場ネットワーク



ハンズオンの実習環境

- VM
  - 株式会社インターネットイニシアティブ (IIJ) 提供
  - 本日中のみ有効
  - CentOS 6.8
  - IPアドレス、パスワードを記した紙配布
  - Rebootしないでください
  - 起動しなくなると実習できなくなります
  - iptablesの設定やinit.dの設定変更などはしないこと
- Login方法
  - OpenSSH: ssh admin@IPアドレス
    - パスワード認証で、パスワードを入力
  - Tera Term
    - New connection  $\rightarrow$  TCP/IP, SSH, Host入力, OK
    - 接続できたところでユーザ名、パスワード入力



# ハンズオンで使用するドメイン名

- 登録済ドメイン名を実習用に提供
  - -株式会社日本レジストリサービス(JPRS) 提供
  - 本日中だけ有効
  - 配布したID, パスワードで、jd-login.jp にログイン
  - -ドメイン名: iw2016-0036.jp など (0001~)
  - IDはドメイン名と同じ
  - 新規登録や廃止、支払い、パスワード変更、移転 などは行なわないでください
    - 実習ができなくなります



# 実習 ドメイン名登録





• レジストラ、リセラ (ISPなど) の受付窓口

– JPドメイン名: jpshop.jp

- gTLD: ICANN-Accredited Registrars
  - https://www.icann.org/registrar-reports/accredited-list.html
- -gTLD Registrarのシェア
  - http://www.domainstate.com/registrar-stats.html
  - ・資料公開時には表を削除

| 1 GoDaddy                   | US | 6 HiChina C           | CN |
|-----------------------------|----|-----------------------|----|
| 2eNom                       | US | 71&1 INTERNET         | DE |
| 3Tucows                     | CA | 8 eName C             | CN |
| 4Network Solutions          | US | 9 GMO Internet        | JP |
| 5 Direct Internet Solutions | IN | 10Wild West Domains L | JS |



#### ドメイン名の登録手順

- レジストラを選ぶ (あるいはISPに依頼)
   実習: 世界シェア9位のGMO Internet を試す
   ブラウザで onamae.com を開く
- 登録したい文字列を入力し、検索ボタンを押す
- ・空いていれば、値段が出る
- 新規契約者はアカウントを作成する
- レジストラのID, パスワードでログインする
- ・ 金を払う (クレジットカード情報の入力など)
- 登録完了
- (属性型JPドメイン名などは登録要件があるので、 その他の手続きが必要)



### ドメイン名の使い方

- ・ドメイン名の使い方
  - レジストラのほとんどはDNSサービスやホスティ ングサービスを提供しているので、そのままクリッ クするだけでメールサーバやWebサーバを契約 できる
  - 本日は、DNSサービスの設定と、ネームサーバ 設定をして自分で動かす実習を行う



実習: ドメイン名設定(1)

- JPDirectは株式会社日本レジストリサービスが 提供するドメイン登録管理サービス
- ブラウザで jd-login.jp を開く

   ID, パスワードを入力して「ログイン」を押す
  - 「次へ」を押す
  - ドメイン名管理の画面が表示される
  - 左に操作メニュー、右に案内や操作画面
- お願い
  - 新規登録や廃止、支払い、パスワード変更、移転な どは行なわないでください
  - (実習ができなくなります)



実習: ドメイン名設定(2)

- (クリックして画面遷移を確認するだけ)
   何か行なったあとは「戻る」や左の各操作を押す
- ・ "登録ドメイン名一覧参照"をクリック
  - 登録されているドメイン名が一つ見える
  - 例: iw2016-0036.jp
- "ネームサーバ設定・変更・解除申請"をクリック
   ドメイン名が表示されるので選び「次へ」をクリック
   現在の設定内容が表示され、設定変更できる
- "ホスト情報"
- "DNSサービス設定"
  - 自前でDNSサーバを運用しなくてもドメイン名を運用できる



### 事業者のDNSサーバの使用

自分でDNSサーバを動かさなくても、簡単な
 ことならできることを学ぶ



#### 実習: DNSサービス使用

- 1. "DNSサービス設定"をクリック
- 2. ドメイン名を選択して、次へ
- 3. ホスト名を入れる項目と、タイプごとの値を入れる項目が 表示されるので、入力する
  - 1. Aに、ホスト名 "@", IPアドレス "202.221.128.104"
  - 2. Aに、ホスト名"www", IPアドレス "202.221.128.104"
  - 3. それ以外の項目は空のままとする
- 4. 「同意して次へ」を押す
- 5. 設定確認画面が表示されるので、「この内容で確定す る」を押す
- 6. 一定時間後、使用可能になる

この設定をすることで、自分でDNSサーバを動かさなくても DNSの使用ができる 例 www.iw2016-0036.jp の A は 202.221.128.104



# DNS設定の確認



### DNS設定の確認方法

- 確認ツール
  - dig: BIND 9付属
  - nslookup (BIND 9付属だが古いため非推奨)
    - 標準添付の場合あり
  - drill: NLnet Labs製 (NSD, Unbound開発元)
- 確認方法
  - drill @IPアドレス ドメイン名 タイプ
  - drill @202.12.27.33 com A
  - オプション多数 (dig, drillで異なる)
- RDビットを意識してオプションを追加すること
  - drill -o rd / -o RD
  - dig +recurse / +norecurse
  - RDビットの説明と、今後のオプションの使用を省略



### DNS設定の確認

- コマンドプロンプト/ターミナルでdrillまたはdigコマンド
   を使用
- 開発者作成の非公式バイナリ
   http://www.nlnetlabs.nl/~willem/drill.exe
- 例: drill.exe @8.8.8.8 internetweek.jp A dig @8.8.8.8 internetweek.jp A
- ブラウザでダウンロードすると多くの場合は以下の場所にdrill.exeがあるので好きな場所にコピーして使うこと
  - %USERPROFILE%¥Downloads



# DNS設定の確認方法(ブラウザ)

- dnsviz.net
  - Sandia National LaboratoriesとVerisignが提供 するチェックツール
- dnscheck.jp



### 実習: DNSサービスの確認

- 割り当てられたドメイン名をブラウザでアクセス
  - 例: www.iw2016-0036.jp
  - ホスト名(Host:)を確認
    - 例: www.iw2016-0036.jp と表示される
- ・ drill / dig で確認
  - drill @a.dns.jp ドメイン名 NS
  - 例: drill @a.dns.jp iw2016-0036.jp NS
  - drill @dns1.sys.jpdirect.jp ドメイン名 A
  - 例: drill @dns1.sys.jpdirect.jp iw2016-0036.jp A
- dnsviz.netで確認



#### 実習: DNSサービス使用解除

・次の実習の都合上、設定を解除する

- 1. jd-login.jp にログイン、次へ
- 2.「DNSサービス設定」をクリック
- 3. ドメイン名を選択して、「次へ」
- 4. 「設定解除」をクリック
- 5.「この内容で確定する」をクリック



# Public DNSサービス の確認


# Public DNS サービス

- だれでも使用できるフルサービスリゾルバサービス
  - Google
    - https://developers.google.com/speed/public-dns/
    - 動作確認: drill @8.8.8.8 internetweek.jp A
  - OpenDNS
    - https://use.opendns.com/
    - 動作確認: drill @208.67.222.222 internetweek.jp A
  - Verisign
    - https://www.verisign.com/en\_US/security-services/publicdns/index.xhtml
  - \_ など
- 使い方
  - /etc/resolv.conf や、クライアントOSで設定するだけ
- Public DNSサービスを使用すると、フルサービスリゾルバの設定をする必要がありません
  - Unboundなど



# DNSサーバの導入



# 使用するソフトウェア

- ISC BIND 9を使用しません
- NLnet Labs製ソフトウェア使用

- www.nlnetlabs.nl

- Idns ライブラリとツール
  - Cで書かれたDNSライブラリ+drill+DNSSECツール
- -NSD 権威DNSサーバ
  - version 1.0が2002年にリリース
- Unbound フルサービスリゾルバ



# VMへのssh login

- OpenSSH (ssh), Tera Team, Puttyなどで
   VM ヘログイン
  - ユーザ名 admin
  - パスワード 配布の紙



# ソフトウェアのインストール

- 必要なソフトウェアを導入
  - sudo yum install gcc make libevent-devel openssl-devel expat-devel
- ソースコードのダウンロード
  - www.nlnetlabs.nl Project  $\rightarrow$  NSD/LDNS  $\rightarrow$  Download
  - www.unbound.net/download.html  $\rightarrow$  Current version
  - ダウンロードしたファイルをサーバにコピー
  - あるいはサーバで直接ダウンロードしてもよい
  - 導入時点で最新のものを使うこと
- インストールは基本的には標準手順
   tar ball を展開、configure; make; make install
- 自分でinstallすると/usr/local/に入るが、パッケージは/usr (/usr/bin; /usr/sbinなど)に入ることに注意
- 今回はホームにコピー済(~/src)



# ソフトウェアのinstall: Idns

- (CentOSには少し古いパッケージがあるのでそれを使 用してよい
  - yum install ldns)
- 最新のldnsを導入する
  - tar xvzf src/ldns-1.6.17.tar.gz
  - cd ldns-1.6.17
  - ./configure --with-drill --with-examples
  - make
  - sudo make install
  - cd ..
  - 確認: ls -l /usr/local/bin/drill /usr/local/bin/ldns-signzone
  - # drill, example (keygen, signzone)を作るという指定



# ソフトウェアのinstall: NSD

- パッケージはないので、以下の手順で導入する
  - tar xvzf src/nsd-4.1.13.tar.gz
  - cd nsd-4.1.13
  - ./configure
  - make
  - sudo make install
  - cd ..
  - 確認: ls -l /usr/local/sbin/nsd /usr/local/sbin/nsd-control
  - 必要に応じてconfigure optionを確認すること



サーバアドレスの設計

- 今回は一台のサーバでNSDとUnboundを動 かすため、慎重な設定が必要
- NSD
  - インターネットから検索できる必要があるのでグ ローバルアドレスが必要
    - 紙に指定してあるアドレスを使用
- Unbound

- サービス自体はインターネットからアクセスされる 必要がないため、loopback 127.0.0.1



# フルサービスリゾルバ Unbound



# 実習 権威サーバの設定

#### まずはDNSSECなし



#### NSD 設 定 の 設 計

- ・ 基本的には標準設定を使用: 最小限の設定
- DNSSEC署名は設定しない
- nsd-control を有効にする

   Remote-control: <改行><tab>control-enalble: yes
- ・ サーバアドレスはglobal addressのみ
- アクセス制限なし

   権威サーバにはアクセス制限不要
   ゾーン転送はIPアドレスとTSIGキー指定で許可

   ゾーンつ、ゾーン転送なし



# NSDの設定 (1)

- "nsd" user作成
  - sudo groupadd nsd
  - sudo useradd M g nsd nsd
- nsd-controlのためのキーファイル生成
  - sudo /usr/local/sbin/nsd-control-setup



ゾーンファイル

ドメイン名と同じファイル名のゾーンファイルを作成

- sudo vi /etc/nsd/ドメイン名

\$TTL 60

\$ORIGIN 割り当てられたドメイン名.

- (a) IN SOA ns1 root (1 3600 900 120960 900)
  - IN NS ns1
  - IN A 202.221.128.104
- ns1 IN A サーバのIPアドレス

www IN A 202.221.128.104

- 今回は実習のため\$TTL 60としているが実運用では3600や 86400などの値を推奨する
- ドメイン名ラベルの最後の"."を省略すると\$ORIGINで指定したドメイン名が追加される
- \$ORIGINの最後の"."に注意



# ゾーンファイルの入力例

- ゾーン名と同じファイル名のファイルを作成する
  - sudo vi /etc/nsd/iw2016-0036.jp

\$TTL 60

#### \$ORIGIN iw2016-0036.jp.

- IN SOA ns1 root (1 3600 900 120960 900)
  - IN NS ns1
  - IN A 202.221.128.104
- ns1 IN A 202.221.128.115
- www IN A 202.221.128.104
- 今回は実習のため\$TTL 60としているが実運用では3600や 86400などの値を推奨する
- ドメイン名ラベルの最後の"."を省略すると\$ORIGINで指定したドメイン名が追加される
- \$ORIGINの最後の"."に注意



ゾーンファイルのチェック

nsd-checkzoneでゾーンファイルのチェック

- nsd-checkzone ゾーン名 ファイル名

- 例: nsd-checkzone iw2016-0036.jp /etc/nsd/iw2016-0036.jp



# nsdの設定: nsd.conf

• sudo vi /etc/nsd/nsd.conf

server:

ip-address: 指定されたIPアドレス database: "" verbosity: 2

remote-control:

control-enable: yes control-interface: 127.0.0.1

zone:

name: "指定されたドメイン名" zonefile: "ドメイン名と同じファイル名" provide-xfr: 指定されたIPアドレス NOKEY



# nsdの設定例: nsd.conf

 sudo vi /etc/nsd/nsd.conf server:

> ip-address: 202.221.128.115 database: "" verbosity: 2

remote-control: control-enable: yes control-interface: 127.0.0.1

zone:

name: "iw2016-0036.jp" zonefile: "iw2016-0036.jp" provide-xfr: 202.221.128.115 NOKEY



# nsd.confのチェック

- nsd-checkconfでnsd.confのチェック
  - nsd-checkconf ファイル名
  - 例: nsd-checkconf /etc/nsd/nsd.conf
  - 何も出なければよい



#### NSDの 起動と 確認

- NSD起動
  - sudo /usr/local/sbin/nsd-control start
- 動作確認
  - drill @指定されたIPアドレス 指定されたドメイン名 A
  - 例: drill @202.221.128.115 iw2016-0036.jp A
- ゾーン転送の確認
  - drill @指定されたIPアドレス 指定されたドメイン名 AXFR
  - 例: drill @202.221.128.115 iw2016-0036.jp AXFR
- ログの確認
  - sudo less /var/log/messages

# 表示例: drill @202.221.128.115<sup>PRS</sup> iw2016-0036.jp A

\$ drill @202.221.128.115 iw2016-0036.jp a
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 37221
;; flags: qr aa rd ; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUESTION SECTION:</pre>

;; iw2016-0036.jp. IN A

;; ANSWER SECTION: iw2016-0036.jp. 60 IN A 202.221.128.104

;; AUTHORITY SECTION: iw2016-0036.jp. 60 IN NS ns1.iw2016-0036.jp.

;; ADDITIONAL SECTION: ns1.iw2016-0036.jp. 60 IN A 202.221.128.115

- ;; Query time: 0 msec
- ;; SERVER: 202.221.128.115
- ;; WHEN: Tue Nov 22 14:59:35 2016
- ;; MSG SIZE rcvd: 82

# 表示例: drill @202.221.128.115<sup>iPRS</sup> iw2016-0036.jp axfr

\$ drill @202.221.128.115 iw2016-0036.jp axfr iw2016-0036.jp. 60 IN SOA ns1.iw2016-0036.jp. 1 3600 900 120960 900 root.iw2016-0036.jp. iw2016-0036.jp. 60 ns1.iw2016-0036.jp. NS IN iw2016-0036.jp. 60 202.221.128.104 IN Α ns1.iw2016-0036.jp. IN 60 Α 202.221.128.115 www.iw2016-0036.jp. IN 60 Α 202.221.128.104 iw2016-0036.jp. 60 ns1.iw2016-0036.jp. IN SOA root.iw2016-0036.jp. 1 3600 900 120960 900



## JPへのネームサーバ登録 (1)

- ドメイン名管理システム jd-login.jp にログイン、 「次へ」
- •「ホスト情報登録申請」をクリック
- ゾーンファイルに指定したネームサーバのホスト名 とIPアドレスを入力
  - 例: ホスト名=ns1.iw2016-0036.jp
     IPアドレス=202.221.128.115
- 「次へ」を押し、正しければ「この内容で確定する」
   を押す
  - 「申請に失敗しました。登録済みのドメイン名または ネームサーバホスト名です。」→ TAを呼ぶ
  - あるいは「ホスト情報削除申請」をクリックして、ホスト名 を入力し、ホスト情報を削除



## JPへのネームサーバ登録 (2)

- ・「ネームサーバ設定・変更・解除申請」をクリック
- ・ドメイン名を選択して、「次へ」
- ゾーンファイルに指定したネームサーバホスト
   名を入力
  - 例: ホスト名=ns1.iw2016-0036.jp
- 「次へ」を押し、正しければ「この内容で確定する」を押す



# JPへのネームサーバ登録の確認

- 一定時間後、確認する
  - drill @a.dns.jp 登録ドメイン名
  - 例: drill @a.dns.jp iw2016-0036.jp



# ドメイン名使用の確認

- これで、インターネットから設定したドメイン名が使用 できるようになったので確認する
- DNSチェックサービスでの確認
  - dnsviz.net
  - dnscheck.jp
- フルリゾルバでの確認
  - キャッシュクリア: sudo /usr/local/sbin/unbound flush\_zone.
  - drill @127.0.0.1 ドメイン名 A
  - 例: drill @127.0.0.1 iw2016-0036.jp A
    - ;; ANSWER SECTION:
    - iw2016-0036.jp. 60 IN A 202.221.128.104
  - 例: drill @8.8.8.8 iw2016-0036.jp A



#### NSDの 自動 起動

- OSによって異なることと、rebootが必要なため
  実習を行なわない
- FreeBSD
  - ports, pkg経由でいれると、/etc/rc.conf に nsd\_enable="YES" と書くことで自動起動
- Linux
  - パッケージ経由でいれれば自動起動できる
     そうでなければ init.d や systemd の設定
- /etc/rc.local に書けば自動起動可能
   \_usr/local/sbin/nsd-control start &



# DNSSEC概要



# DNSSECとは

- DNSセキュリティ拡張(DNS Security Extensions)
- DNS利用者が受け取ったDNS応答の正統性を検証できる仕組み
  - 正統とは、DNSゾーン管理者が作成・公開したデータと同じであること
  - DNSゾーン管理者が自ゾーンに電子署名を追加
  - jpゾーンにはJPレジストリが電子署名を追加
  - example.jpゾーンにはexample.jp管理者が電子署名を追加
- 署名に使用した鍵情報を親ゾーンに登録
  - example.jp管理者はexample.jpの電子署名に使用した鍵の 公開鍵情報をJPレジストリに登録
- DNS利用者は電子署名が追加されたDNS応答の正統性 を検証
  - ルートからの信頼の連鎖をもとにルートから末端まで検証



### 公開鍵暗号

暗号化・復号に異なる鍵(秘密鍵と公開鍵)を用いる暗号方式

- 受信者の公開鍵で暗号化したものを、受信者の秘密鍵で復号(暗号通信)
- 送信者の秘密鍵で暗号化したものを、送信者の公開鍵で復号(電子署名)
- 代表的な公開鍵暗号方式: RSA暗号



8

公開鍵

広く配布

- 暗号通信
  - 1. 受信者はあらかじめ公開鍵を広く公開
  - 2. 送信者は受信者の公開鍵で暗号化
  - 3. 受信者は本人の秘密鍵で復元
  - 秘密鍵は受信者のみが秘密に管理、秘密鍵を持つ受信者のみが復号可能
  - 秘密鍵を他人に伝える必要がない





### 電子署名の概念

- 署名には、元データを圧縮した値(ハッシュ値)を用いる
- 送信者の秘密鍵でデータのハッシュ値を暗号化したものが署名
- 公開鍵で署名を復元するとハッシュ値が得られる
- 受信者は、データのハッシュ値と、復号したハッシュ値を比較、同じであれば、送信者が電子署名したデータであると判断できる

- 送信者の秘密鍵は送信者しか持たないため





### DNSへの応用 (DNSSEC)

- ゾーン管理者は、署名のための鍵対(秘密鍵、公開鍵)を作成する
- ゾーン内のリソースレコード(RRSet)を秘密鍵で署名する
  - www.example.jpのAや、AAAA
- DNSサーバはDNS応答に署名(RRSIG)を添付する
- ゾーンの公開鍵を知っていれば、RRSIG RRの署名を復号してゾーン情報と比較し、署名の検証が可能





## 信頼の連鎖

- 公開鍵の情報を上位レジストリに登録し、鍵による信頼の連鎖を形成
  - 公開鍵のハッシュを鍵情報(DS)としてレジストリ(親ゾーン)に登録
  - レジストリは、NSとグルーに追加して鍵情報DSをルート/TLDゾーンに記述
- ルート公開鍵をフルリゾルバ(DNSキャッシュサーバ)に登録するだけで、各 組織までのデータを検証可能



# DNSSECで追加されたリソースレデー コード

- DNSKEY
  - 公開鍵を保持
  - DNSKEY フラグ プロトコル アルゴリズム 公開鍵
- RRSIG
  - 電子署名を保持
  - RRSIG Type Algorithm Labels OriginalTTL 署名有効 期限 署名有効開始時刻 鍵タグ 署名者名 署名
  - 署名対象のリソースレコードと同じパケット内に入る
  - 対象とするタイプ (A, AAAA, NS, DS, MX, SOAなど)
  - 署名有効期間
  - 署名に使われた鍵の情報 (署名ドメイン名、鍵タグ)

# DNSSECで追加されたリソースレックパン コード(2)

- DS
  - DS 鍵タグ アルゴリズム DigestType DNSKEY のハッシュ

- 不存在証明のために用いられるRR
  - NSEC
  - NSEC3
  - NSEC3PARAM



# DNSKEYの例

% drill -D @a.root-servers.net . dnskey ;; ANSWER SECTION:

. 172800 IN DNSKEY 256 3 8 AwEAAYbinauHA9oUb4aGNtJIrepyGoYy0OL01rvIhvo3RWN/Ch8p2C4Z EkpvUYkx74r9JpgrOsjKOv+JQdKtT2u8AxGjUoH8x8HdpDiMV7XnpWJo 9wAxIFtDtbMnPwRQ3dWsT1p5myrGcm7EFJ9j7KmiAEG5hGsevZqcnqMO W9QFkmp/zM0TFYXYWq6AsAof2uZqLUyd+nHIW0TGsaHMzcTNfA8Ww+ OY V7R4bcR/8edCEo6OAh9j48R1hRtuO1e2MQdnkITc9DJIjB4Cq1gQKwv/ ku7mAvmFuWkRotMZIFN3vDhpmpmy7M0C1EHSRAgP+HkblLRQKOPnwI /V ksJEU4fmnhk=

. 172800 IN DNSKEY 257 3 8 AwEAAagAIKIVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dIzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzguI0sGIcGOYI7OyQdXfZ57reIS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0=



# DSの例

% drill -D @a.root-servers.net jp DS

;; ANSWER SECTION:

jp. 86400 IN DS 53899 8 1 00ded0bb8203cfb6abb054318ec95c4f13f4b5b0

jp. 86400 IN DS 53899 8 2 c02ba0e5a47e49181ee132bb0612d950766ad9c62fd29bdeeafbc 463b9d37fde

jp. 86400 IN RRSIG DS 8 1 86400 20161120170000 20161107160000 39291 .

XjW9wErbdFwgJU3u9gqFeRxrHHR6jme49K42abv0AcmOI0KA XO5YhP/BUD3JHG6FJ380wZa/dSDgl/uZliIsZx5RAAq2+VMv9r5 am0evImi6SJAu4sVrJHgzr5FP0pkwUgFMzOObBpuIa/I91JkMbC dIM7CgojJXjIQn6dP1OdIMsc0BhUDJqaT0JOvWyH3Qci23xtJw DiaXqI7LoMf0pLPnWnVI8Wj5Qy+NMYEuQ9jzreYPCYrnqwuqX gx2hvAhWp+TYSSvvt/FntAk3c8wkyGGdkQ7xO1f8BDI5Uh2Um/ 5tCF8BFRaXqDrKrd1ob5lqZyL74P5FjecDN8MYDWMoQ==

SignerItroot


#### MX+署名の例

#### % drill -D @ns0.amsl.com ietf.org mx ;; ANSWER SECTION: ietf.org. 1800 IN MX 0 mail.ietf.org. ietf.org. 1800 IN RRSIG MX 5 2 1800 20171102223706 20161102213718 40452 jetf.org. DE49Rq7bRFwnmy69gmNXOI1cNd5fcEAQKQftBOcWY 8DaYnhqYfly6UBH9L1zhStAvpPDRhPe9Yz8I+h/BmDxY nPOzMD/tM5ObnwMVPwpM0pN0/kqzTcsIB2QU7isHwP Uct7C2wt++nOPFWDEDBwhcJ9vNzNLfbqbG/iVdS4qi2k WZzqP4lra8Qy3qq2kUQBguFd6p71Y2CNR8APullj845V GbwGeMVawUoM5BhrMd1LYPPHvwPC260cFwT5zK/E GeQDnpfuzPEj/qwFIV9pru3nr0WP9BJuCRIFS09Li0ajY APwKGbK48brSZST6+e6dFoT0fu7vh0XbCGodCDRPQ W = =



# DNSSECでの検証結果

• ルートからの検証が成功

- 信頼の連鎖が成立しない  $- DSが登録されていない \rightarrow DNSSEC非対応$  $- DSに対応する公開鍵がない \rightarrow エラー$
- 署名検証失敗 → エラー
   署名有効期間ではない
   署名と署名対象データが異なる



#### DNSSECが解決しないこと

- DNS応答の改竄・騙りは発見できるが、正しいDNS 検索結果は別途得る必要がある
  - キャッシュポイズニングなどの攻撃で検証エラー
    - TCPで再検索?
  - そのままではアクセスできない
- DNS応答の正統性が保証されたとしても、その後の 通信の安全を保証するわけではない
  - 通信路のハイジャック、盗聴はDNSでは防げない
  - TLS/SSLやIPsecなどと併用
- FAQ
  - DNSSECではDNS応答を暗号化するのか?
    - ・暗号化しない



#### **DNSSEC** Status

#### ・ プロトコル

- 2005年3月に標準化完了 RFC 4033~4035 - 2008年3月にTLDで必要となるRFC 5155
- ・ ソフトウェア: プロトコル標準化とともに実装
- Root: 2010年7月に対応
- TLD: ほとんどのTLDが登録者の鍵情報受付対応
   org: 2009年6月, com, net: 2011年, jp: 2011年1月
- 各組織
  - .govはDNSSEC対応が必須
  - 日本国内の一部の組織: iij.ad.jp, jprs.co.jp, ...
  - CloudFlareなどの事業者がDNSSECサービス提供
- 名前解決(DNSSEC検証)
  - Google Public DNS, Comcast (US CATV)など対応
- 2011年から使える状態



# DNSSEC実習



#### Idns examples

- LDNSはCで書かれたDNSライブラリで、使用例のプログラムが同梱
- Idns-keygen:署名鍵生成ツール
   BIND 9のdnssec-keygenに対応
- Idns-signzone : 署名ツール
  - BIND 9のdnssec-signzoneより機能が低い
    - ・ \$INCLUDEなし
    - -N unixtime なし (SERIALをunixtimeにするオプション)
    - マルチスレッド非対応 (CPU増やしても性能伸びない)
- Idns-key2ds:DNSKEYからDSを作る
- drill



#### 署名鍵生成

- KSK 2048 bit RSA, ZSK 2048 bit RSAで生成
  - Idns-keygen -k -a RSASHA256 -b 2048 -r /dev/urandom ドメイン名
  - Idns-keygen -a RSASHA256 -b 2048 -r /dev/urandom ドメイン名
  - a RSASHA256: 暗号方式RSA, ハッシュSHA256の暗号アルゴリズム
  - -b 2048 … RSAビット長 2048
  - -k … KSKを作成する
  - -r /dev/urandom ... よくないが速い乱数生成機使用
  - 例: Idns-keygen -k -a RSASHA256 -b 2048 -r /dev/urandom iw2016-0036.jp
  - 例: Idns-keygen -a RSASHA256 -b 2048 -r /dev/urandom iw2016-0036.jp



#### 実習: 署名鍵生成

- KSK生成
  - cd /etc/nsd
  - sudo ldns-keygen -k -a RSASHA256 -b 2048 -r /dev/urandom ドメイン名
  - 例: Idns-keygen -k -a RSASHA256 -b 2048 -r /dev/urandom iw2016-0036.jp
- ZSK生成
  - sudo ldns-keygen -a RSASHA256 -b 2048 -r /dev/urandom ドメイン名
  - 例: Idns-keygen -a RSASHA256 -b 2048 -r /dev/urandom iw2016-0036.jp
- 生成したキーの情報が表示されるので記録する
  - KSK: Kiw2016-0036.jp.+008+42061
  - ZSK: Kiw2016-0036.jp.+008+59733



#### 実習:署名

- cd /etc/nsd
- sudo ldns-signzone ゾーンファイル ZSK名
   KSK名
  - 例: Idns-signzone iw2016-0036.jp ¥ Kiw2016-0036.jp.+008+59733 ¥ Kiw2016-0036.jp.+008+42061
- 署名結果
  - 確認: Is -I iw2016-0036.jp.signed
  - 確認: less iw2016-0036.jp.signed



#### 署名結果の有効化

- NSDへの読み込み
  - /etc/nsd/nsd.conf を編集し、ゾーンファイル名を ゾーン名.signedに変更
    - 例: sudo vi /etc/nsd/nsd.conf zonefile: "iw2016-0036.jp.signed"
  - sudo /usr/local/sbin/nsd-control reconfig
  - sudo /usr/local/sbin/nsd-control reload
  - これで署名済みゾーンファイルが有効になる



### ゾーン情報の確認

- DNSKEY
  - drill -D @サーバIPアドレスドメイン名 DNSKEY
  - 例: drill -D @202.221.128.115 iw2016-0036.jp DNSKEY
  - ドメイン名 DNSKEYとRRSIGが表示される
- A
  - drill -D @サーバIPアドレスドメイン名 DNSKEY
  - 例: drill -D @202.221.128.115 www.iw2016-0036.jp A

- ドメイン名 AとRRSIGが表示される



#### JPへのDS登録

- KSKのDSをJPに登録する必要がある
- cat {KSK}.ds して確認する

例: cat Kiw2016-0036.jp.+008+42061.ds
 iw2016-0036.jp. IN DS 42061 8 2
 55635a068aecedee2271470b0de005b0534d0ad3540e49e2
 afa7b92772c22676

- ・ ドメイン名管理システム jd-login.jp にログイン
- •「ネームサーバ設定・変更・解除申請」をクリック
- ドメイン名を選んで「次へ」
- 申請内容入力画面で、「署名鍵入力」をクリック
- DSの後を入力して、「次へ」
  - 例: "42061 8 2 55635a068aecedee2271470b0de005b0534d0ad3540e49e 2afa7b92772c22676"を入力
- 設定内容を確認して、「この内容で確定する」を押す
- 「設定検証」してもよい



# JPへのネームサーバ登録の確認

- 一定時間後、確認する
  - drill -D @a.dns.jp 登録ドメイン名
  - dig +dnssec @a.dns.jp登録ドメイン名
  - 例: drill -D @a.dns.jp iw2016-0036.jp



#### DNSSEC確認

- これで、インターネットから設定したドメイン名が DNSSEC検証できるようになったので確認する
- DNSチェックサイトでの確認
  - dnsviz.net
  - dnscheck.jp
- フルリゾルバでの確認
  - drill -D @127.0.0.1ドメイン名 A
  - dig +dnssec @127.0.0.1 ドメイン名 A
  - 例: drill -D @127.0.0.1 iw2016-0036.jp A
  - 例: drill -D @8.8.8.8 iw2016-0036.jp A
    - Flagsに ad があればよい



### ldnsを直接使う問題点

- 現在使用しているキーの名前を覚えていないといけない
- DNSSECでは定期的に署名しないといけない
- 署名のたびにゾーンファイルのシリアルを増やさないといけない
- ・鍵更新の場合は自分でキーの名前を管理する 必要がある
- 最大の問題点は面倒であること
   すなわち、ミスの原因になる



# DNSSECサポートツール

- Infoblox
  - BIND 9ベースのアプライアンス、DNSSEC対応
- Secure64

   DNSSECの鍵管理、署名のアプライアンス
- BIND 9 (DNSSEC for humans)
   Idnsと比べて鍵管理などが便利になっている
   今回のハンズオンの目的からはずれる
- OpenDNSSEC
   DNSSECの鍵管理、署名に特化したソフトウェア
   すこし大規模
- 小規模なものがほしい → 2009年にはなかった



#### dnsseczonetool

- 鍵管理するツールを試作
  - 作者: 藤原
  - 作成時期: 2009~2010
  - 公開場所: http://member.wide.ad.jp/~fujiwara/
- 作成の動機
  - dnssec-keygen, dnssec-signzoneはよいツールだが、 鍵を覚えておくのが面倒
  - 再署名も面倒
  - BIND 9のDNSSEC for Humansはやりすぎ
    - DNSSECの鍵には有効期間がないのに、独自に追加
    - 個人ドメイン名では鍵更新不要、定期再署名で十分
  - 鍵番号などを適度に管理してくれ、signとかrolloverとす るだけで動くようなwrapper scriptがほしい
  - NLnet LabsのIdnsでも使いたい
  - なにをやっているかわかる簡単なものがほしい (shell)



# dnsseczonetoolのコマンド

- 鍵セット生成
  - dnsseczonetool keygen ドメイン名
- 署名
  - dnsseczonetool sign ドメイン名
- DS表示
  - dnsseczonetool status ドメイン名
- ZSK更新
  - dnsseczonetool add-next-zsk ドメイン名
  - dnsseczonetool zsk-rollover ドメイン名
- KSK更新
  - dnsseczonetool add-next-ksk ドメイン名
  - dnsseczonetool ksk-rollover ドメイン名



#### 定期的な再署名

- DNSSECでは署名に有効期間がある
  - 標準では30日
  - 鍵を変更しなくても定期的に再署名する必要あり
  - 再署名するとシリアル番号を増やす必要あり
  - シリアル番号として時刻を使うとよい (unixtime)
  - ゾーンファイルのシリアル値を \_SERIAL\_ にする
    - BIND 9のdnssec-signzoneにはシリアル番号変更機能があるが、ldns-signzoneにはないため
- cronによる自動再署名設定

- crontabに、dnsseczonetool sign ドメイン名



#### 実習の準備

- ドメイン名管理システム jd-login.jp でDSの削除
   ホームサーバ設定変更解除申請
   ドメイン名を選択
   署名鍵フィールドを空にして、設定
- 古い鍵ファイルの削除
   sudo rm /etc/nsd/Kiw2016-\*
- ・キャッシュのクリア

– sudo /usr/local/sbin/unbound-control flush\_zone "."



# 実習: dnsseczonetool

- dnsseczonetoolを /etc/nsd にコピー
  - http://github.com/kfujiwara/dnsseczonetool
  - cd /etc/nsd
  - sudo cp ~/src/dnsseczonetool .
  - sudo chmod +x dnsseczonetool
- /etc/nsd/dnsseczonetool.confを作成 (次スライド)
- ・ ゾーンファイルを、ゾーン名に一致させること(済)
  - 例: /etc/nsd/iw2016-0036.jp
- nsd.conflc指定するゾーンファイル名は、ゾーン 名.signedとする(済)
  - 例: zonefile: "iw2016-0036.jp.signed"



#### /etc/nsd/dnsseczonetool.conf

#### BIND 9のツール用に作っていたため、NSD/Idnsで使用する ための変更点を記述

% sudo vi /etc/nsd/dnsseczonetool.conf

```
MASTERDIR="/etc/nsd"
keygen="/usr/local/bin/ldns-keygen"
signzone="/usr/local/bin/ldns-signzone"
dsfromkey="/usr/local/bin/ldns-key2ds -n"
RNDC_OPTION="OFF"
UNIXTIME=`date +%s`
ZONE_PREPROCESS="sed s/_SERIAL_/$UNIXTIME/"
RELOADALL_COMMAND="/usr/local/sbin/nsd-control reload"
ZSK_PARAM="-a RSASHA256 -b 2048 -r /dev/urandom"
KSK_PARAM="-a RSASHA256 -b 2048 -k -r /dev/urandom"
SIGN_PARAM=""
```



実習:ゾーンファイルの変更

ゾーン名と同じファイル名のファイルを作成する
 – sudo vi /etc/nsd/ゾーン名

\$TTL 3600

\$ORIGIN 割り当てられたドメイン名.

IN SOA ns1 root (<u>SERIAL</u> 3600 900
 120960 900)

IN NS ns1 IN A 202.221.128.104 ns1 IN A サーバのIPアドレス www.IN A 202.221.128.104



#### 実習:鍵生成と署名

- sudo /etc/nsd/dnsseczonetool keygen ドメ イン名
  - 例: /etc/nsd/dnsseczonetool keygen iw2016-0036.jp
- sudo /etc/nsd/dnsseczonetool sign ドメイン
   名
  - 例: /etc/nsd/dnsseczonetool sign iw2016-0036.jp
  - 自動的にreload実施



### ゾーン情報の確認

- DNSKEY
  - drill -D @サーバIPアドレスドメイン名 DNSKEY
  - 例: drill -D @202.221.128.115 iw2016-0036.jp DNSKEY
  - ドメイン名 DNSKEYとRRSIGが表示される
- A
  - drill -D @サーバIPアドレスドメイン名 DNSKEY
  - 例: drill -D @202.221.128.115 www.iw2016-0036.jp A

- ドメイン名 AとRRSIGが表示される



### ゾーン情報の確認

• SOAを見てシリアルが違うことを確認

– drill -D @サーバIPアドレスドメイン名 SOA

- 例: drill -D @202.221.128.115 iw2016-0036.jp SOA

iw2016-0036.jp. 60 IN SOA ns1.iw2016-0036.jp. root.iw2016-0036.jp. 1479799303 3600 900 120960 900

iw2016-0036.jp. 60 IN RRSIG SOA 8 2 60 20161220072143 20161122072143

34440 iw2016-0036.jp. 署名



#### JPへのDS登録

- KSKのDSをJPに登録する必要がある
  - sudo /etc/nsd/dnsseczonetool status ドメイン名
  - 例: /etc/nsd/dnsseczonetool status iw2016-0036.jp
  - DSが表示される
- ・ ドメイン名管理システム jd-login.jp にログイン、次へ
- •「ネームサーバ設定・変更・解除申請」をクリック
- ドメイン名を選んで「次へ」
- 申請内容入力画面で、「署名鍵入力」をクリック
- DSの後を入力して、「次へ」
  - 例: "42061 8 2
     55635a068aecedee2271470b0de005b0534d0ad3540e49e
     2afa7b92772c22676"を入力
- 設定内容を確認して、「この内容で確定する」を押す
- ・ 「設定検証」してもよい



## JPへのネームサーバ登録の確認

- ・一定時間後、確認する
  - drill -D @a.dns.jp 登録ドメイン名
  - 例: drill -D @a.dns.jp iw2016-0036.jp



#### DNSSEC確認

- これで、インターネットから設定したドメイン名が
   使用できるようになったので確認する
   ただし、反映に15分程度はかかる
- DNSvizでの確認
  - http://dnsviz.net/

ドメイン名を入力

- ・フルリゾルバでの確認
  - drill -D @127.0.0.1 ドメイン名 A
  - 例: drill -D @127.0.0.1 iw2016-0036.jp A
  - 例: drill -D @8.8.8.8 iw2016-0036.jp A
    - Flagsに ad があればよい



# 再署名するとシリアル値を変更

#### 再署名

- sudo /etc/nsd/dnsseczonetool keygen ドメイン名

- 例: sudo /etc/nsd/dnsseczonetool sign iw2016-0036.jp
- SOA RRを見てシリアルが違うことを確認

- drill -D @サーバIPアドレスドメイン名 SOA

— 例: drill -D @202.221.128.115 iw2016-0036.jp SOA iw2016-0036.jp. 60 IN SOA ns1.iw2016-0036.jp. root.iw2016-0036.jp. 1479799303 3600 900 120960 900 ↓

iw2016-0036.jp. 60 IN SOA ns1.iw2016-0036.jp. root.iw2016-0036.jp. 1479805803 3600 900 120960 900

・ゾーン転送可能



#### 自動再署名

- crontabに、署名コマンドを記述
   crontab も OSによって異なる可能性あり
- sudo vi /etc/crontab
- 分時日月曜 root /etc/nsd/dnsseczonetool sign ドメ イン名

#### 例:

5 6 \* \* 0 root /etc/nsd/dnsseczonetool iw2016-0036.jp

(毎週日曜日の6時5分にiw2016-0036.jpの再署名を行 なう)



#### DNSSECの運用

- ・定期的に鍵更新を行うこと
  - ただし、まだ2048bit RSAは破られていないので 5年ほど放置でも問題はない
    - Rootも5年間同じKSKを使ってきた
    - 来年更新予定



#### dnsseczonetoolの注意点

- シリアル番号の生成にsedを使っているため、 ゾーンファイルの他の部分に\_SERIAL\_と書か ないこと
  - あるいは、dnsseczonetool.confの ZONE\_PREPROCESSを変更すること
  - ZONE\_PREPROCESS="sed s/\_SERIAL\_/\$UNIXTIME/"
- 無保証です
  - 個人的に作り、公開したものです
  - 問題があればメールやgithub経由で連絡をください
  - できる範囲で対応します
  - https://github.com/kfujiwara/dnsseczonetool



ゾーン転送

- 今回は実習時間・環境の制約でゾーンあたりのネームサーバ数を1とした
- 通常は複数のネームサーバを用意して冗長
   化・分散を行なう
  - NS設定とグルーの設定
  - ゾーンファイルを管理する(hidden)master
  - ゾーンファイルを受け取って提供するslave
  - NSD, BIND 9, Knot DNSなどを組み合わせると よい



# NSDでのゾーン転送設定

- ゾーンごとに nsd.confの "zone:" 節に記述
- 転送設定、転送要求、notifyをIPアドレスごと
   にTSIGキーと組み合わせて記述
  - provide-xfr: ゾーン転送の許可 (master)
  - request-xfr: ゾーン転送の要求 (slave)
  - notify: notify送信 (master)
  - allow-notify: notifyの受信 (slave)
- TSIGを使用していない場合はNOKEYと書く
- 設定後 nsd-control reconfig



#### ゾーン転送: master

# nsd.confのゾーン設定に provide-xfrとnotify をIPアドレスごとに記述

#### zone:

| name:       |
|-------------|
| zonefile:   |
| provide-xfr |
| notify:     |

"ドメイン名" "ゾーンファイル名" IPアドレス TSIG\_key-name IPアドレス TSIG\_key-name

\_ 例

#### zone:

| name:        | "iw2016-0036.jp"            |
|--------------|-----------------------------|
| zonefile:    | "iw2016-0036.jp.signed"     |
| provide-xfr: | 2001:db8:1111:2222::1 NOKEY |
| notify:      | 2001:db8:1111:2222::1 NOKEY |
| provide-xfr: | 203.0.113.5 NOKEY           |
| notify:      | 203.0.113.5 NOKEY           |


ゾーン転送: slave

 nsd.confのゾーン設定に request-xfrと allow-notifyをIPアドレスごとに記述

| zone: | name:<br>zonefile:<br>request-xfr:<br>allow-notify: | "ドメイン名"<br>"ゾーンファイル名"<br>IPアドレス TSIG_key-name<br>IPアドレス TSIG_key-name |
|-------|-----------------------------------------------------|-----------------------------------------------------------------------|
|       |                                                     |                                                                       |
| zone: |                                                     |                                                                       |
|       | name:                                               | "iw2016-0036.jp"                                                      |
|       | zonefile:                                           | "slave/iw2016-0036.jp"                                                |
|       | provide-xfr:                                        | 2001:db8:3333:4444::1 NOKEY                                           |
|       | notify:                                             | 2001:db8:3333:4444::1 NOKEY                                           |
|       | provide-xfr:                                        | 203.0.113.5 NOKEY                                                     |
|       | notify:                                             | 203.0.113.5 NOKEY                                                     |

NSDがゾーンファイルを書くため、/etc/nsd/slave/を作成し、ownerをnsdとしておくとよい



#### ネームサーバ情報の追加

- ・ゾーンファイルへの追加
  - ネームサーバ名を決め、NS行とアドレスを追加
    - 例: iw2016-0036.jp. IN NS ns2.iw2016-0036.jp. ns2.iw2016-0036.jp. IN A 203.0.113.5
  - reloadする、あるいは再署名してreloadする
- JPへのネームサーバ追加
  - ホスト情報の追加
    - ・例:ホスト名=ns2.iw2016-0036.jpアドレス=203.0.113.5
  - ネームサーバ情報の追加
    - •例:ホスト名=ns2.iw2016-0036.jp



# リゾルバの動作

#### (予備) 時間が余ったら実施する



#### 名前解決実習

- 名前解決を行うリゾルバになりきってルートから
  名前ツリーをたどる
  - コマンド: drillまたはdig
  - drill @ルートサーバ 解決したい名前 タイプ
- 課題
  - 自分で設定したドメイン名 iw2016-00xx.jp A
  - www.nic.ad.jp A
  - internetweek.jp A
  - www.google.co.jp A
  - www.asahi.com A
  - 逆引き 44.129.178.203.in-addr.arpa PTR



# 名前解決例 www.asahi.com (1)

- drill @198.41.0.4 www.asahi.com A
  - com. IN NS a.gtld-servers.net.
  - com. IN NS b.gtld-servers.net.
  - 略
  - -a.gtld-servers.net. IN A 192.5.6.30
  - b.gtld-servers.net. IN A 192.33.14.30
  - 略
  - comの情報は、[a-m].gtld-servers.netが知って いて、それらのIPv4, IPv6アドレスが添付
- 次はそれらのアドレスに聞く



# 名前解決例 www.asahi.com (2)

- drill @<u>192.5.6.30</u> www.asahi.com A
  - asahi.com. IN NS dns-a.iij.ad.jp.
  - asahi.com. IN NS dns01.asahi-np.co.jp.
  - asahi.com. IN NS dns02.asahi-np.co.jp.
  - asahi.comの情報は、dns-a.iij.ad.jp, dns01.asahinp.co.jp, dns02.asahi-np.co.jpが知っている
  - com DNSサーバはそれらのアドレスを知らない
    - ・なぜなら、それらはasahi.com以下の名前ではない
- 次はそれらのアドレスを調べないといけない
  - dns-a.iij.ad.jp, dns01.asahi-np.co.jp, dns02.asahinp.co.jpのA, AAAA

- ルートから調べること



# 名前解決例 www.asahi.com (3)

- dns01.asahi-np.co.jpのアドレスを調べたと する (3ステップ省略)
- drill @133.173.150.100 www.asahi.com A
  - www.asahi.com. IN CNAME
    www.asahi.com.edgesuite.net.
  - www.asahi.comは、 www.asahi.com.edgesuite.netの別名である
  - 次はwww.asahi.com.edgesuite.net Aを検索
  - ルートから調べること



#### 関連資料

- オランダ製ソフトウェアによるDNSSEC遊び, 21 July 2010, DNSOPS.JP BoF, Shinagawa, JP.
  - http://dnsops.jp/bof/20100721/dnsops-20100721.pdf
  - https://github.com/kfujiwara/dnsseczonetool
- 開発元: www.nlnetlabs.nl
- DNSプロトコル
  - RFC 1034, 1035, 2181, 2308, 4033, 4034, 4035, 5011, 5155 などと、それらをUpdateしているもの