Multipath TCPの紹介と最近の動向

Yoshifumi Nishida GE Global Research

GE imagination at work

Who Am I?

Name: Yoshifumi Nishida

Current Job

Senior Researcher at GE Global Research in San Ramon, CA

IETF Activities

- Co-chair of TCPM Working Group
- Co-chair of Multipath TCP Working Group
- Transport Area Directorate

What Is Multipath TCP?

What is Multipath TCP (MPTCP)?

- An extension to TCP
 Not a new protocol
- Allow single TCP session to use multiple addresses
 Utilize multiple TCP connections, but expose only one TCP connection to upper layer

Benefit for MPTCP

Basic advantages

Increase throughput

- Utilize multiple paths simultaneously
- Increase resiliency
 - Failover to other paths when one path becomes unavailable
- Dynamic address configuration
 - Add or delete IP addresses without terminating connection

Additional possibilities

- Mobility support
 - Don't need to use Mobile IP
- Stimulate IPv6 transition
 - Legacy IPv4 applications will start using IPv6 without any modification

Why Not Multiple TCP Connections?

- Applications can use multiple TCP connections!
 But,
 - Need to rewrite existing applications
 - It can be too aggressive than normal TCP
 - Especially when all paths share the same bottleneck
 - Sophisticated data transmission will be difficult
 - Retransmit data to other paths will be tricky
 - Applications need to decide how much data to be sent on each path

Why Not SCTP?

- SCTP already supports using multiple addresses!
 But,
 - Middlebox traversal can be problematic (especially NAT)
 Some middleboxes don't understand SCTP traffic
 - Need to rewrite existing applications to use SCTP
 - SCTP uses different APIs
 - Not easy to fallback to TCP
 - It can be cumbersome when peer doesn't support SCTP
 - Offload engine is not prevailed very much

Isn't It Too Aggressive?

MPTCP utilizes multiple TCP connections!
 But,

- MPTCP employs new congestion control logic
 - Coupled Congestion Control
 - Adjust transfer rate of single flow from total transfer rate
- Design criteria for coupled congestion control
 - Should coexist gracefully with existing legacy TCP flows
 - Should not be neither too aggressively nor too timidly

You can also specify a path to be used as "Backup"

Do I Need to Modify My Application?

Applications will not be required to update for MPTCP

- MPTCP can work with current socket API for TCP
- If your kernel support MPTCP, TCP applications can start using MPTCP

For advanced features, special APIs for MPTCP will be needed

Multipath TCP Architecture

Layer Architecture

Multipath TCP operates at the transport layer
 Transparent to both higher and lower layers

MPTCP layer is upper layer on TCP
 It controls multiple TCP sessions as subflows

Application Layer	Application			
	Multipath TCP			
Transport Layer	TCP	TCP	ТСР	
Internet Layer	IP	IP	IP	

Signalling

All control Information for MPTCP is sent in TCP options
 Option Kind: 30

- subtype field is used to identify the type of suboptions
- 7 types are currently defined
 - E.g. MP_CAPABLE, DSS, MP_JOIN, ADD_ADDR

Sequence Numbering

Use two layers of sequence spaces

- connection level sequence number
- subflow sequence number (TCP's sequence number)

Sender sends mapping information in TCP options

Receiver assembles data from multiple flows by mapping info

Connection Level Seq Num	subflow ID	subflow Seq num		
1-1000	1	1-1000		
1001-2000	2	5000-6000		
2001-2500	3	1000-1500		

MPTCP Manning

Congestion Control (1)

A simple sample target scenario

- Network resources behave like a single pooled resource
- MPTCP uses two links modestly, but efficiently
 - Compete normal TCP modestly
 - Outperform single path TCP

Congestion Control (2)

Coupled Congestion Control

- Affect only increase phase of the congestion avoidance state
 - Use Linked Increase Algorithm
- Slow-Start, Fast Retransmission, Fast Recovery algorithm are not changed
- Linked Increase Algorithm
 - For each ACK received on subflow i, increase cwnd_i by

$$min(\frac{(\alpha \times bytes_acked \times mss_i)}{total_cwnd}, \frac{bytes_acked \times mss_i}{cwnd_i})$$

$$\alpha = total_cwnd \times \frac{\max_i(\frac{cwnd_i \times mss_i^2}{rtt^2})}{\sum_i(\frac{cwnd_i \times mss_i}{rtt_i})^2}$$

'alpha' needs to be computed in case of packet lost or once per RTT

Protocol Example (1)

Connection Setup

- Exchange MP_CAPABLE option in SYN exchange
 - Notify it has multipath capability
 - Send a token to enhance security

Protocol Example (2)

Starting New Subflow

- Send JOIN option in SYN packet from new address
 - Attach peer's token to identify multipath TCP session

Protocol Example (3)

Address Knowledge Exchange

- Notify additional address info to the peer
 - Useful for NATed host

Multipath TCP WG Status

Multipath TCP WG

- Established in November 2008
- Current Status
 - Finished all initial milestones by March 2013
 - RFC6181 (Threat Analysis) .. Informational
 - RFC6182 (Architectural Guideline) .. Informational
 - RFC6356 (Congestion Control) .. Experimental
 - RFC6824 (Protocol Spec) .. Experimental
 - RFC6897 (API Consideration) .. Informational

Next Step

- Proceed MPTCP protocol spec to Proposed Standard
- Publish supplemental documents
 - Implementation advice
 - Use cases and operational experiences
 - Middlebox behavior

Discussions at 88th Meeting (1)

Two sessions

Monday (17:40-19:40) and Wednesday (15:50-16:50)

How to advance protocol spec?

- IESG requests strong security mechanism for PS drafts
- Current consensus: two-pronged approach
 - Prong 1: Minor updates to address some potential risks
 - Provide the same security level as SCTP Dynamic Address Configuration
 - RFC5061 is PS. So, this is good enough to be PS
 - Prong 2: Major updates for more advanced security
 - TCPCrypt can be a good candidate as base technology
 - ▲ But, we will need more investigation

Discussions at 88th Meeting (2)

Q&A session for MPTCP activities in Apple Inc.

- Invite Stuart Cheshire as a speaker
- Some comments from Stuart
 - MPTCP is currently used only for Siri
 - Migrate between interfaces (3G/LTE, Wifi) based on performance
 - If you want to use MPTCP for your appl, use bugreport system
 - MPTCP traffic seems to go through most of the Internet
 - Most middleboexs don't affect MPTCP
 - Mobile IP was also considered, but we chose MPTCP
 - More host-level solution and requires home-agents, etc
 - Cannot comment on future plans

Additional Information

MPTCP Implementations

Linux (plus Android)

http://www.multipath-tcp.org/

FreeBSD

http://caia.swin.edu.au/urp/newtcp/mptcp/

Citrix

- Netscaler release 10.1
- Apple Inc.
 - Used for Siri
- Others
 - Multipath Networks
 - MPTCP supported router

MPTCP Documentations

RFCs

- RFC6181 (Threat Analysis)
- RFC6182 (Architectural Guideline)
- RFC6356 (Congestion Control)
- RFC6824 (Protocol Spec)
- RFC6897 (API Consideration)

Technical Background

- 'The Resource Pooling Principle', Damon Wischik, Mark Handley and Marcelo Bagnulo Braun. ACM/SIGCOMM CCR.
- 'Practical Congestion Control for Multipath Transport Protocols', Costin Raiciu, Damon Wischik, Mark Handley, UCL Tech Report
- 'Control of multipath TCP and optimization of multipath routing in the Internet', Damon Wischik, Mark Handley and Costin Raiciu, Proc. NetCOOP 2009.